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Electron-transfer (ET) reactions comprise the fundamental
steps of many important biological processes. To better
understand the mechanisms of these reactions, considerable
effort has been made toward the study of ET processes that
occur within metal-substituted proteins, protein complexes, and
artificial polypeptides.1 Recent effort has focused about the
search for protein2 or peptide-based3 ET “pathways”. It has
been suggested thatâ-pleated sheets may provide an efficient
route for mediating long-range electronic coupling.4-6 How-
ever, whereas severalâ-sheet models have recently appeared
in the literature, none are amenable to electron-transfer studies.7-11

Here, we describe the structural and ET properties of the first
â-sheet-bridged donor/acceptor complex which serves as an
archetype to permit future investigation of the ability ofâ-sheets
to mediate long-range ET reactions.
Preparation of theâ-sheet ET complex was initiated by

reacting equimolar amounts of the symmetric anhydride of [RuII-
(bpy)2L]12 (bpy ) 2,2′-bipyridine, L ) 3,5-dicarboxy-2,2′-
bipyridine) with NH2-Val-Val-OMe in acetonitrile. The reaction
was monitored by reverse-phase HPLC, which showed a new
ruthenium polypyridyl complex (I ) appearing at a longer
retention time.13 The binuclear donor/acceptor complex (II ) was
prepared by couplingI to [NH2-Val-Val-CoIII (NH3)5],14 which
was subsequently shown by1H NMR to be attached to the
3-carboxy position of L. The mononuclearâ-sheet mimic
containing no electron acceptor (III ) was prepared as previously
described.10 Circular dichroism spectroscopy and semiprepara-

tive C18 HPLC were used to identify and separate the∆-l and
Λ-l diastereomers ofII .15 The ∆-l II was arbitrarily chosen
for conformational assignment by 1-D, TOCSY, DQCOSY, and
NOESY 1H NMR experiments as performed in H2O/D2O
solvents. The one-dimensional spectrum of this compound
consists of a single set of sharp, well-defined peaks indicating
that this charged (4+) binuclear metallopeptide does not
aggregate in aqueous solution but, rather, assumes a single
conformation. In contrast, spectra obtained in CD3CN show
multiple sets of peptide resonances indicating the presence of
multiple conformations in this solvent.
Table 1 summarizes the1H NMR data used to assign the

â-sheet conformation to∆-l II in aqueous solution.16 Idealized
â-sheets exist as extended peptide chains whose amide protons
display large backbone coupling constants (3JNH-CRH g 7 Hz).17

The large coupling constant observed for residues 3 and 4 (g8.0
Hz) show thatφ ) -120° ( 26°, which clearly satisfies the
requirement for an extendedâ-strand conformation (φ )
-119°).17 The coupling observed for amide 2 (7.5 Hz) is also
an acceptable value for this structure. However, the small value
of 3JNH-CRH seen for amide 1 indicates a distortion from the
idealized structure. 2-D NOESY was used to confirm the
â-sheet assignment since they are characterized by close
through-space contacts between the Ci

RH and Ni+1H protons
of adjacent amino acids (dRN e 2.5 Å).18 The NOESY spectrum
of ∆-l II clearly shows the existence of strong interresidue cross
peaks, in addition to weak intraresidue NOEs (Figure 1).
Further conformational data is obtained from the temperature
coefficients of the amide proton chemical shifts (dδ/dT). All
four amide protons experience a pronounced upfield shift with
increasing temperature, indicating that they are in exchange with
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Table 1. 400 MHz NMR Parameters for Amide Protons of∆-l II
taken in 3:1 H2O/D2O

residue 1 2 3 4

δ298K (ppm) 9.70 8.90 8.50 8.45
3JNH-CRH (Hz) 6.6 7.5 8.0 8.6
dδ/dT (ppb/K) -7.2 -8.3 -8.0 -5.8

Figure 1. Schematic representation of∆-l II including the weak (- -
-) and strong (s) NOE interactions observed for the peptide-based
protons in 3:1 H2O/D2O (400 MHz, T ) 10 °C, τm ) 150 ms,
presaturation solvent suppression).
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solvent H2O. However, the lower coefficient for amide 4 (dδ/
dT) -5.8 ppb/K) suggests that it is moderately solvent-shielded
in a manner suggestive of its participation in an intramolecular
hydrogen bond.19 We note that this residue also displays the
largest vicinal coupling constant (3JNH-CRH ) 8.6 Hz).
The driving force for photoinduced ET from the [*Ru(bpy)2L]

donor to the [CoIII (NH3)5] acceptor ofII can be calculated
according to eq 1.20 The metal-based oxidation ofIII was

measured asE° ) +1.13 V vs Ag/AgCl (E° ) +1.34 V vs
NHE) in 0.1 M NaCl, which is similar to that reported for related
compounds.21 Using the estimated values ofEMLCT ) +1.7 V,
as taken from the room temperature emission maximum (λem
) 725 nm in D2O), andE1/2(CoIII/II ) ) -0.1 V vs NHE22 gives
a driving force for photoinduced ET of∆G° ) -0.27 eV.
Figure 2 shows that the steady-state luminescence ofII is

quenched relative to that of the mononuclear speciesIII . This
can be analyzed in terms of eq 2 to givekq(Φ) ) 4.3× 106

s-1, whereΦ andΦ0 are the emission quantum yields ofII
and III , respectively, and the emission lifetime ofIII is τ0 )
45 ( 1 ns, as measured in D2O.23,24 This result is confirmed
by emission lifetime measurements from whichkq was calcu-
lated according to eq 3 to givekq(τ) ) 2.8× 106 s-1. In this
treatment,τ ) 40( 1 ns, which is the observed lifetime ofII .

The lifetime results were found to be independent of concentra-
tion (50-250µM), indicating that an intramolecular quenching
mechanism obtains. To confirm thatkq represents an electron-
transfer rate and is not due to an energy-transfer mechanism, a
dilute sample ofII (50 µM in D2O) was subjected to steady-
state photolysis using a quartz-tungsten lamp. Reverse-phase
HPLC of the resulting solution showed no evidence of the
binuclear starting material. The lifetime of the resulting
photoproduct closely resembled that of the mononuclear ruthe-
nium compound, which indicates that aquation of the reduced
cobalt center has occurred.
The photoinduced electron-transfer rate ofII can be compared

to those reported for the polyproline-bridged series, [*Ru(bpy)2-
(cmbpy)-Pron-Co(NH3)5]4+ where cmbpy) 4-carboxy-4′-meth-
yl-2,2′-bipyridine andn ) 1-3.3a,25 In that series, adjacent
proline residues are believed to reside in the polyproline II
conformation and, likeâ-pleated sheets, to exist as extended
peptide chains. The excited-state ruthenium complex [*Ru-
(bpy)2(cmbpy)] is a better reductant by ca. 200 mV than [*Ru-
(bpy)2L] by virtue of its higher emission energy (λem ) 648
nm). However, the rate of photoinduced ET for then ) 2
proline case was several-fold smaller than that observed forII
(kET ) 1.1× 106 s-1). The apparent enhancement ofkET for
II may be attributable to several factors including the intrinsic
photophysical properties of the ruthenium donor,26 the possibility
of a slightly shorter through-space distance to the Co(NH3)5
center, or the presence of an efficient coupling pathway along
theâ-sheet. In order to discriminate between these possibilities,
ongoing work in our laboratory seeks to determine the distance
dependence ofket in relatedâ-sheet systems.
Acknowledgment. The authors would like to thank Prof. M. A. J.

Rodgers for use of the laser flash photolysis facilities at BGSU. M.Y.O.
acknowledges the National Science Foundation (CHE-9307791), the
donors of the Petroleum Research Fund (G-25695), the Ohio Board of
Regents, and the Faculty Research Committee at BGSU for supporting
this work. The National Science Foundation and Ohio Board of Regents
are also acknowledged for assisting in the purchase of the circular
dichroism spectrometer (BIR-9208356) and the high-field NMR instru-
ments (CHE-9302619).

JA953615I

(19) Imperiali, B.; Fisher, S. L.; Moats, R. A.; Prins, T. J.J. Am. Chem.
Soc. 1992, 114, 3182.

(20) Rehm. D.; Weller, A.Isr. J. Chem. 1970, 8, 259.
(21) Kelly, L. A.; Rodgers, M. A. J.J. Phys. Chem. 1995, 99, 13132.
(22) Isied, S. S.Prog. Inorg. Chem. 1984, 32, 443.

(23) Emission lifetimes are taken from transients collected as an average
of five laser shots acquired from two separate samples of material obtained
from two separate syntheses. Excitation was achieved using the 532 nm
output from a Q-switched Nd:YAG laser (10 ns pulse). In all cases, the
decay profiles remained single exponential for at least 8 half-lives.

(24) All emission measurements were performed in D2O to enhance the
emission lifetimes (see ref 12b).

(25) Electron-transfer rates in the oligoproline series in ref 3a were
originally reported on the basis of transient emission data. In all cases,
these results have been subsequently confirmed by transient absorption
experiments (Isied, S., private communication).

(26) Cooley, L. F.; Larson, S. L.; Elliott, C. M.; Kelly, D. F.J. Phys.
Chem. 1991, 95, 10694.

Figure 2. Emission spectra of equimolar samples ofII and III (150
µM) taken in neat D2O at ambient temperature.

∆G° ) -[E1/2(Co
III/II ) - E1/2(Ru

III/II )] - EMLCT (1)

kq(Φ) ) (Φ0/Φ - 1)1/τ0 (2)

kq(τ) ) (1/τ - 1/τ0) (3)
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